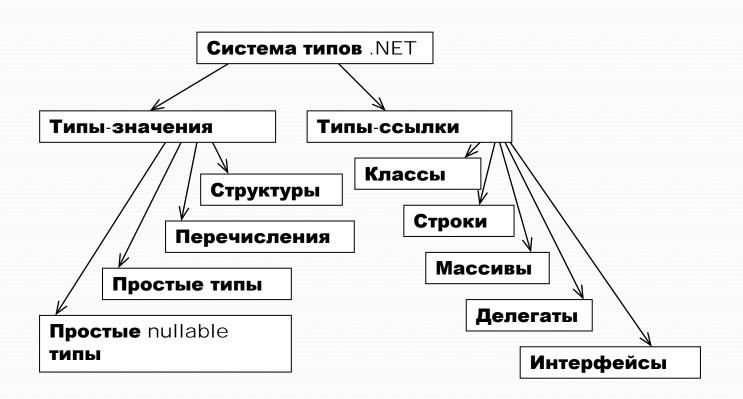
Типы данных С#. Объявление и инициализация

Система типов


С# является языком со строгой типизацией данных.

.NET Framework предоставляет общую систему типов CTS (Common Type System), использование которой позволяет разрабатывать приложение на любом из языков, поддерживающих эту среду.

Система типов поддерживает две категории типов, каждая из которых разделена на подкатегории:

- типы значений (типы-значения),
- ссылочные типы (типы-ссылки).

Схема типов представлена на рисунке:

Для переменной типа значение в отведенной для неё ячейке памяти содержится значение этой переменной.

Для переменной ссылочного типа в отведенной для неё ячейке памяти содержится адрес области памяти, в которой записано значение этой переменной.

Отличия типов-значения от типов-ссылок

	Типы-значения	Типы-ссылки
	value-types	reference-types
Объект	непосредственно	ссылкой в куче
представлен	меинервне	
Объект	в стеке	в куче
располагается		
Значение по	0, false, '\0',	ссылка имеет
умолчанию	null	вначение null
При выполнении	значение	ссылка
операции		
присваивания		
копируется		

Для типов-ссылок необходимо явно выделять место в памяти, используя метод New().

Все типы (типы-значения и типы-ссылки), за исключением простых типов-значений и пары предопределённых ссылочных типов (string и object), должны определяться (если уже не были ранее специально определены) программистами в рамках объявлений.

Подлежащие объявлению типы называются производными типами.

Простые (элементарные) типы

Это типы, имя и основные свойства которых известны компилятору. Относительно элементарных типов компилятору не требуется никакой дополнительной информации. Свойства и функциональность этих типов известны.

Используемые в .NET языки программирования основываются на общей системе типов. Между именами простых типов в С# и именами типов, объявленных в Framework Class Library, существует взаимно однозначное соответствие (см. табл.).

Соответствие простых типов С# FCL-типу

Тип в С#	Соответствует FCL–типу	Описание
sbyte	System.SByte	Целый. 8–разрядное со знаком. Диапазон значений: 128 127
byte	System.Byte	Целый. 8-разрядное без знака. Диапазон значений: 0 255
short	System.Int16	Целый. 16-разрядное со знаком. Диапазон значений: -32768 32767
ushort	System.UInt16	Целый. 16-разрядное без знака. Диапазон значений: 0 65535
int	System.Int32	Целый. 32-разрядное со знаком. Диапазон значений: -2147483648 2147483647
uint	System.UInt32	Целый. 32-разрядное без знака. Диапазон значений: -0 4294967295

Соответствие простых типов C# FCL-типу

Тип в С#	Соответствует FCL–типу	Описание
long	System.Int64	Целый. 64-разрядное со знаком. Диапазон значений: - 9223372036854775808 9223372036854775807
ulong	System.UInt64	Целый. 64-разрядное без знака. Диапазон значений: 0 18446744073709551615
char	System.Char	16 (!) разрядный символ UNICODE.
float	System.Single	Плавающий. 32 разряда. Стандарт IEEE.
double	System.Double	Плавающий. 64 разряда. Стандарт IEEE.
decimal	System.Decimal	128-разрядное значение повышенной точности с плавающей точкой.
bool	System.Boolean	Значение true или false.

Литералы. Представление значений

В программах на языках высокого уровня (С# в том числе) **литералами** называют последовательности входящих в алфавит языка программирования символов, обеспечивающих явное представление значений, которые используются для обозначения начальных значений в объявлении членов классов, переменных и констант в методах класса.

Арифметические литералы кодируют значения различных (арифметических) типов. Тип арифметического литерала определяется следующими интуитивно понятными внешними признаками

Символьные литералы

Представляют собой **заключённые в одинарные кавычки** вводимые с клавиатуры одиночные символы: 'X', 'p', 'Q', '7',

Строковые литералы

Это последовательность символов и символьных управляющих последовательностей, заключённых в двойные кавычки.

..."c:\\My Documents\\sample.txt"...

Объявление и инициализация

Выполнение оператора объявления переменной типазначения в методе класса приводит к созданию в памяти объекта соответствующего типа, возможно проинициализированного определённым значением. Это значение может быть задано в виде литерала соответствующего типа Например,

```
//определения переменных типов-значений:
int a;
System.Int32 a;

//определение и инициализация переменных типа
значения:
int a = 0;
int a = new int();
System.Int32 a = 0;
System.Int32 a = new System.Int32();
```

Область видимости

При определении классов и методов используются фигурные скобки. Содержимое между этими скобками называется блоком. Блоки могут быть вложены друг в друга. Любая переменная, объявленная внутри конкретного блока, называется локальной переменной для этого блока, и она не существует вне, то есть ее нельзя использовать в других блоках, если они не являются вложенными.

Не допускается объявление переменной во вложенном блоке с тем же именем, что и переменная, объявленная в основном блоке:

```
double a=3;

double a; //ошибка компиляции
}
```

Константы

Объявляются с дополнительным спецификатором const. Требуют непосредственной инициализации:

```
//константа инициализируется литералом 3.14.

const float Pi = 3.14;
```

Пример

```
Int32 x; Double y; string s;
Console.Write("Введите X=");
   s = Console.ReadLine();
   x = Convert.ToInt32(s);
 Console.Write("Введите Y=");
   s = Console.ReadLine();
   y = Convert.ToDouble(s);
Console.WriteLine("Произведение X*Y=\{0,5:g\}", x * y);
            Console.ReadKey();
```